

Permafrost-shrub interactions in the Torngat Mountains, northern Labrador

Robert G. Way^{1,2}, L. Hermanutz³, A. Lewkowicz⁴, A. Trant⁵ & D. Whitaker⁶

¹Department of Geography and Planning, Queen's University

²Labrador Institute, Memorial University of Newfoundland

³Department of Biology, Memorial University of Newfoundland

⁴Department of Geography, Environment and Geomatics, University of Ottawa

⁵School of Environment, Resources and Sustainability, University of Waterloo

⁶Western and Labrador Field Unit, Parks Canada

ArcticNet

>PP56C56DT6 DP76460000

ArcticNet

Study Area

Climate & Vegetation

Rapid shrub change at Ramah Bay

Rapid shrub change at Ramah Bay

DC electrical resistivity tomography

• ERT

 Surveys at 17 locations in TMNP. Frost and temperature probes used as validation.

ERT Summary

Kangalaksiorvik Lake

- Tall shrubs impacted permafrost thickness & active layer depth on south-facing slope;
- North facing slope showed small active layer response;

Komaktorvik River

- Tall shrubs did not impact active layer depth but did impact permafrost thickness;
- Nearby survey (not shown) showed deep active layer with no difference between tall shrubs/tundra

Ramah Bay

 Tall shrubs throughout the site eliminated permafrost in some areas, deepened active layer/created talik in others;

Simple theory

Past shrub cover

Present or future shrub cover

Active layer (freeze-thaw layer)

Permafrost (perennially frozen layer)

Permafrost (perennially frozen layer)

Unfrozen ground

Unfrozen ground

ERT Summary

Kangalaksiorvik Lake

- Tall shrubs impacted permafrost thickness & active layer depth on south-facing slope;
- North facing slope showed small active layer response for even taller shrubs;

Komaktorvik River

- Tall shrubs did not impact active layer depth but did impact permafrost thickness;
- Nearby survey (not shown) showed deep active layer with no difference between tall shrubs/tundra

Ramah Bay

 Tall shrubs throughout the site eliminated permafrost in some areas, deepened active layer/created talik in others;

Ecosystem-only approach

Integrated ecosystemgeosystem approach

Integrated theory

Past shrub cover Present or future shrub cover

Active layer (freeze-thaw layer)

Permafrost (perennially frozen layer)

Unfrozen ground Unfrozen ground

Present or future conditions

Bedrock

Acknowledgements

ArcticNet

>PP56C6DT6 DP76460C6

Association of Canadian Universities for Northern Studies

